June 28, 2019 File No. 262018.063 Ms. Corina Forson Chief Hazards Geologist State of Washington Department of Natural Resources Washington Geological Survey 111 Washington Street SE Olympia, Washington 98504 Mr. Scott Black Program Development Manager State of Washington Office of Superintendent of Public Instruction 600 Washington Street Olympia, Washington 98504 Subject: Department of Natural Resources Washington Geological Survey, School Seismic Safety Assessment Project, Contract No. AE 410 - Seismic Evaluation for Green Mountain School District Dear Ms. Forson and Mr. Black: Reid Middleton and our consultant team, under the direction of The Department of Natural Resources (DNR) Washington Geological Survey (WGS) School Seismic Safety Project, have conducted seismic evaluations of 222 school buildings and 5 fire stations throughout Washington State. This letter is transmitting the results of these seismic assessments for each school district that graciously participated in this statewide study. We understand that you will be forwarding this letter and the accompanying seismic screening reports to each school district for their reference and use. Many disparate studies on improving the seismic safety of our public school buildings have been performed over the last several decades. Experts in building safety, geologic hazards, emergency management, education, and even the news media have been asserting for decades that seismic risks in older public school buildings represent a risk to our communities. The time to act is now, before we have a damaging earthquake and/or tsunami that could be catastrophic. This statewide school seismic safety assessment project provides a unique opportunity to draw attention to the need for statewide seismic safety policies and funding on behalf of all school districts that will help enable school districts to increase the seismic safety of their older buildings to make them safer for students, teachers, staff, parents, and the community. It is not the intent of this study to create an unfunded mandate for school districts to seismically upgrade their schools without associated funding or statewide seismic safety policy support. The overall goal of this study was to screen and evaluate the current levels of seismic vulnerabilities of a statewide selection of our older public school buildings and to use the data and information to help quantify funding and policy needs to improve the seismic safety of our public schools. In this process, we are using the information to inform not only the Governor EVERETT 728 134th Street SW Suite 200 Everett, WA 98204 425 741-3800 and the Legislature of the policy and funding needs for seismically safe schools but also the school districts that participated in the study. #### School Buildings Evaluated in the Green Mountain School District We appreciate Green Mountain School District's participation and invaluable assistance in this statewide project. The following school district buildings were included as part of this study: - 1. Green Mountain School, Gymnasium - 2. Green Mountain School, Main Building The seismic screening of these buildings was performed using the American Society of Civil Engineers' Standard 41-17, *Seismic Evaluation and Retrofit of Existing Buildings* (ASCE 41-17), national standard Tier 1 structural and nonstructural seismic screening checklists specific to each building's structure type. The WGS also conducted seismic site class assessments to measure the shear wave velocity and determine the soil site class at each campus. Site class is an approximation of how much soils at a site will amplify earthquake-induced ground motions and is a critical parameter used in seismic design. Reid Middleton subsequently used this information in their seismic screening analyses. The following table is a list of available seismic assessment information used in our study: | School Building | Year
Constructed | FEMA Building
Classification | Structural Drawings
Available for Review | | | |---|---------------------|---------------------------------------|---|--|--| | Green Mountain School,
Gymnasium | 1950 | Wood Frame | No | | | | Green Mountain School, Main
Building | 1932 | Unreinforced Masonry
Bearing Walls | No | | | Detailed descriptions of the seismic screening evaluations of these buildings can be found in the individual building reports and the ASCE 41-17 Tier 1 screening checklist documents enclosed with this letter. This information will also be available for download on the WGS website: https://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/earthquakes-and-faults/school-seismic-safety. These Tier 1 seismic screening checklists are often the first step employed by structural engineers when trying to determine the seismic vulnerabilities of existing buildings and to begin a process of mitigating these seismic vulnerabilities. School district facilities management personnel and their design consultants should be able to take advantage of this information to help inform and address seismic risks in existing or future renovation, repair, or modernization projects. Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Green Mountain School District June 28, 2019 File No. 262018.063 Page 3 It is important to note that information used for these school seismic screenings was limited to available construction drawings and limited site observations by our team of licensed structural engineers to observe the general conditions and configuration of each building being seismically screened. In many cases, construction drawings were not available for review as noted in the table above. Due to the limited scope of the study, our team of engineers were not able to perform more-detailed investigations above ceilings, behind wall finishes, in confined spaces, or in other areas obstructed from view. Where building component seismic adequacy was unknown due to lack of available information, the unknown conditions were indicated as such on the ASCE 41-17 Tier 1 checklists. Additional field investigations are recommended for the "unknown" seismic evaluation checklist items if more-definitive determinations of seismic safety compliance and further development of seismic mitigation strategies are desired. #### **Nonstructural Seismic Screening** The enclosed ASCE 41-17 Tier 1 Nonstructural Seismic Screening checklists can provide immediate guidance on seismic deficiencies in nonstructural elements. Mitigating the risk of earthquake impacts from these nonstructural elements should be addressed as soon as practical by school districts. Some nonstructural elements may be easily mitigated by installing seismic bracing of tall cabinets, moving heavy contents to the bottom of shelving, and adding seismic strapping or bracing to water tanks and overhead elements (light fixtures, mechanical units, piping, fire protection systems, etc.). It is often most economical to mitigate nonstructural seismic hazards when the building is already undergoing mechanical, electrical, plumbing, or architectural upgrades or modernizations. Enclosed with these nonstructural seismic screening checklists are excerpts from the Federal Emergency Management Agency (FEMA) publication E-74 entitled, *Reducing the Risks of Nonstructural Earthquake Damage* (FEMA E-74). We have included these FEMA publication excerpts to help illustrate typical seismic mitigation measures that can potentially be implemented by district facilities and maintenance personnel. #### Structural Seismic Screening The enclosed ASCE 41-17 Tier 1 Structural Seismic Screening checklists have evaluation statements that are reviewed for specific building elements and systems to determine if these items are seismically compliant, noncompliant, not applicable, or unknown. These evaluation statements provide guidance on which structural systems and elements have identified seismic deficiencies and should be investigated further. Further seismic evaluations beyond these seismic screening checklists typically consist of more-detailed seismic structural analyses to better define the seismic vulnerabilities and risks. This information is then used to determine cost-effective ways to seismically improve these buildings with stand-alone seismic upgrade projects or incrementally as part of other ongoing building maintenance, repair, or modernization projects. Consequently, implementing seismic structural mitigation strategies Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Green Mountain School District June 28, 2019 File No. 262018.063 Page 4 typically requires that they be developed as a part of longer-term capital improvements and modernization programs developed by the school district and their design consultants. #### **Next Steps** Due to the screening nature of the ASCE 41-17 Tier 1 procedures, an in-depth seismic evaluation and analysis of these buildings may be needed before detailed seismic upgrades or improvements, conceptual designs, and probable construction cost estimates are developed. If you have any questions or comments regarding the engineering reports or would like to discuss this further, please contact us. Sincerely, David B. Grongen David B. Swanson, P.E., S.E. Principal, LEED AP, F.SEI #### Limitations The professional services described in this document were performed based on available information and limited visual observation of the structures. No other warranty is made as to the professional advice included in this document. This document has been prepared for the exclusive use of the Department of Natural Resources, the Office of the Superintendent of Public Instruction,
and this school district and is not intended for use by other parties, as it may not contain sufficient information for other parties' purposes or their uses. ## 1. Green Mountain, Green Mountain School, Gymnasium 1950 ### 1.1 Building Description Building Name: Gymnasium Facility Name: Green Mountain School District Name: Green Mountain ICOS Latitude: 45.948 ICOS Longitude: -122.539 **ICOS** Year Built: County/District ID: 6103 ICOS Building ID: 17949 ASCE 41 Bldg Type: W2 Enrollment: 158 Gross Sq. Ft.: 6,353 Number of Stories: 1 S_{XS BSE-2E}: 0.817 S_{X1 BSE-2E}: 0.516 ASCE 41 Level of Seismicity: Site Class: D $V_{S30}(m/s)$: 341 Liquefaction None Potential: Tsunami Risk: None Structural Drawings Available: No Evaluating Firm: WRK Engineers The Green Mountain School Gymnasium Building is a one-story structure. The main floor is constructed out of wood studs. The lower floor is partially below grade and is constructed out of wood stud walls over the concrete foundation wall. The 1950 building is constructed on sloping ground and is located in Woodland, Washington. The building is rectangular in plan, roughly 110 feet by 65 feet, with a maximum roof height of around 24 feet. The roof diaphragm is a flexible, wood-framed diaphragm. The floor diaphragm above the lower level is also flexible and wood-framed. The building shares the site with the main school building, a parking lot, and two other buildings. ### 1.1.1 Building Use The gymnasium building includes a gym and offices. The school has over 150 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of Green Mountain School | Structural System | Description | |---------------------|--| | Structural Roof | The roof system is composed of sheathing over wood framing. | | Structural Floor(s) | The floor systems are composed of sheathing over wood framing at elevated | | Structural Floor(s) | floors and a concrete slab-on-grade. | | Foundations | The exterior walls are supported by continuous wall footings. | | Cuarrita Criatana | The gravity system consists of wood trusses, wood beams, wood columns, and | | Gravity System | wood stud bearing walls. | | Lataral Systam | Lateral forces are resisted by wood shear walls in the longitudinal and transverse | | Lateral System | directions. | ## 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Green Mountain School | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Green Mountain Green Mountain School Gymnasium | Deficiency | Description | |--------------------|---| | Shear Stress Check | Shear wall sheathing type is unknown and the All other conditions - 100 lb/ft criteria was assumed. Pseudo shear stress is greater than 100 lb/ft. This building likely requires shear wall strengthening, such as the addition of plywood sheathing, if non-existent, or new shear walls. Further investigation is required. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Green Mountain Green Mountain School Gymnasium | | Structural Checklist Items Marked as Unknown for Green Mountain Green Mountain School Gymnasium | |--------------------|--| | Unknown Item | Description | | Load Path | No drawings provided. This item requires further investigation to make a final determination on its compliance | | Load I atti | and to develop a mitigation recommendation, if necessary. | | | The liquefaction potential of site soils is unknown at this time given available information. Bedrock | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | Rupture | expected surface fault ruptures. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wood Posts | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wood Sills | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | | Girder-Column | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Connection | visually verified. This item requires further investigation to make a final determination on its compliance and to | | Connection | develop a mitigation recommendation, if necessary. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wood Sill Bolts | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | | Straight Sheathing | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on | | | its compliance and to develop a mitigation recommendation, if necessary. | | Spans | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on | | Spans | its compliance and to develop a mitigation recommendation, if necessary. | | Diagonally | | | Sheathed and | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on | | Unblocked | its compliance and to develop a mitigation recommendation, if necessary. | | Diaphragms | | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Green Mountain Green Mountain School Gymnasium Deficiency Description The Tier 1 nonstructural seismic evaluation performed for this school building could not confirm nonstructural seismic deficiencies due to limited access for visual observation and/or lack of existing drawings available for review. Please refer to the next page of this report for the list of nonstructural items marked as "unknown" and commentary indicating the need for further investigation or the likelihood of compliance or non-compliance based on the age of construction. #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Green Mountain Green Mountain School Gymnasium | Unknown Item | Description |
--|---| | LF-1 Independent Support.
HR-not required; LS-MH; PR-MH. | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to verify stair connections. | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Further investigation is required to review anchorage of tall narrow contents. All tall narrow contents should be anchored to the structure. | | ME-2 In-Line Equipment. HR-not required; LS-H; PR-H. | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow Equipment.
HR-not required; LS-H; PR-MH. | Further investigation is required to review anchorage of tall narrow equipment. All tall narrow equipment should be anchored to the structure. | ### Photos: Figure 1-1. Green Mountain Gymnasium - East Entrance Figure 1-2. Green Mountain Gymnasium - Northwest Exterior Figure 1-3. Green Mountain Gymnasium - Southeast Exterior Figure 1-4. Green Mountain Gymnasium - East Exterior Figure 1-5. Green Mountain Gymnasium - Northeast Exterior Figure 1-6. Gymnasium Figure 1-7. Stage ## Green Mountain, Green Mountain School, Gymnasium ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|--| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | | | X | No drawings provided. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | X | | | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | X | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | | X | | | | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | |----------|--|---|---|--| | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ### **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|--| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Bedrock liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | ## 17-6 Collapse Prevention Structural Checklist for Building Type W2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--
---|---|----|-----|---|---| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing – 1,000 lb/ft; Diagonal sheathing – 700 lb/ft; Straight sheathing – 100 lb/ft; All other conditions – 100 lb/ft. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.7.1) | | х | | | Shear wall sheathing type is unknown and the All other conditions - 100 lb/ft criteria was assumed. Pseudo shear stress is greater than 100 lb/ft. This building likely requires shear wall strengthening, such as the addition of plywood sheathing, if non-existent, or new shear walls. Further investigation is required. | | Stucco (Exterior
Plaster) Shear Walls | Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.2) | | | X | | | | Gypsum Wallboard or
Plaster Shear Walls | Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.3) | | | X | | | | Narrow Wood Shear
Walls | Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.4) | X | | | | | | Walls Connected
Through Floors | Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Tier 2: Sec. 5.5.3.6.2; Commentary: Sec. A.3.2.7.5) | | | X | | | | Hillside Site | For structures that are taller on at least one side
by more than one-half story because of a sloping
site, all shear walls on the downhill slope have
an aspect ratio less than 1-to-1. (Tier 2: Sec.
5.5.3.6.3; Commentary: Sec. A.3.2.7.6) | | | X | | | | Cripple Walls | Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Tier 2: Sec. 5.5.3.6.4; Commentary: Sec. A.3.2.7.7) | | X | | |---------------|--|--|---|--| | Openings | Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Tier 2: Sec. 5.5.3.6.5; Commentary: Sec. A.3.2.7.8) | | X | | ### Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------------|---|---|----|-----|---|---| | Wood Posts | There is a positive connection of wood posts to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.3) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Wood Sills | All wood sills are bolted to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.4) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low & Moderate Seismicity) ### Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Wood Sill Bolts | Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.7) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ### **Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | Diaphragm Continuity | The diaphragms are not composed of split-level floors and do not have expansion joints. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.1) | X | | | | | | Roof Chord Continuity | All chord elements are continuous, regardless of changes in roof elevation. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.3) | X | | | | | | Diaphragm
Reinforcement at
Openings | There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Tier 2: Sec. 5.6.1.5; Commentary: Sec. A.4.1.8) | | | X | | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | | X | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | | | | X | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | | | X | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Other Dianhragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. | X | | | |------------------|---|---|--|--| | | A.4.7.1) | | | | ## Green Mountain, Green Mountain School, Gymnasium ## 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---
---| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | X | | No fire sprinklers | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | X | | | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | X | | | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | | | |--|--|--|---|--|--| | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | ### **Partitions** | 1 at titions | | | | | | | |---|--|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural
Separations. HR-not
required; LS-not
required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT |
--|--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | X | | | |--|--|--|---|--|--| | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | X | | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | X | | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | | | | CG-8 Overhead Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | | X | | | ### **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-------------------| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No masonry veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No masonry veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No masonry veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No masonry veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No masonry veneer | | M-6 Anchorage. HR-not required; LS-MH; PR-MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No masonry veneer | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | No masonry veneer | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | No masonry veneer | ### Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------
---|---|----|-----|---|---------| | - | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | X | | | |--|--|--|---|--|--| | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | X | | | ### **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | ### Stairs | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|----------|---|---------| | S-1 Stair Enclosures. HR-not required; LS-LMH; PR-LMH. | EVALUATION STATEMENT Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. | С | NC | N/A
X | U | COMMENT | | | A.7.10.1) | | | | | | | S-2 Stair Details. HR-not
required; LS-LMH; PR-
LMH. | using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. | | X | Further investigation is required to verify stair connections. | |--|--|--|---|--| | | (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | | ## **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | | | X | Further investigation is required to review anchorage of tall narrow contents. All tall narrow contents should be anchored to the structure. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | X | | | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | | X | Further investigation is required to review anchorage of tall narrow equipment. All tall narrow equipment should be anchored to the structure. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required;
PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-6 Vibration Isolators.
HR-not required; LS-not
required; PR-H. | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Elevators | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--------------------------|---|---|----|-----|---|-------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | No elevator | | PR-H. | A.7.16.1) | | | | | | | EL-2 Retainer Plate. HR- | A retainer plate is present at the top and bottom | | | | | | | not required; LS-H; PR- | of both car and counterweight. (Tier 2: Sec. | | | X | | No elevator | | H. | 13.7.11; Commentary: Sec. A.7.16.2) | | | | | | | EL-3 Elevator
Equipment. HR-not | Equipment, piping, and other components that are part of the elevator system are anchored. | | | |---|---|---|-------------| | required; LS-not | (Tier 2: Sec. 13.7.11; Commentary: Sec. | X | No elevator | | required; PR-H. | A.7.16.3) | | | | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | No elevator | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | No elevator | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | No elevator | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | No elevator | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | No elevator | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | No elevator | ## 1. Green Mountain, Green Mountain School, Main Building ### 1.1 Building Description Building Name: Main Building Facility Name: Green Mountain School District Name: Green Mountain ICOS Latitude: 45.948 ICOS Longitude: -122.539 **ICOS** County/District ID: 6103 ICOS Building ID: 12470 ASCE 41 Bldg Type: URM Enrollment: 158 Gross Sq. Ft.: 3,554 Year Built: 1932 Number of Stories: 2 S_{XS BSE-2E}: 0.817 S_{X1 BSE-2E}: 0.516 ASCE 41 Level of Seismicity: High Site Class: D $V_{S30}(m/s)$: 341 Liquefaction None Potential: Tsunami Risk: None Structural Drawings Available: No Evaluating Firm: WRK Engineers The Green Mountain School main building is a two-story structure. The main floor is constructed out of unreinforced masonry walls and wood stud infills. The lower floor is partially below grade and constructed out of concrete walls. The 1932 building is constructed on sloping ground and is located in Woodland, Washington. The building is rectangular in plan, roughly 60 feet by 30 feet, with a maximum roof height of around 24 feet. The roof and floor systems are both flexible diaphragms. The building shares the site with a gymnasium building and two other buildings. ### 1.1.1 Building Use The school building includes classrooms and administrative offices. The school has over 150 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of Green Mountain School | Structural System | Description | | |---------------------|---|--| | Structural Roof | The roof system is composed of sheathing over wood framing. | | | Structural Floor(s) | The floor system is composed of sheathing over wood framing at the main level | | | | and a concrete slab-on-grade on the lower level. | | | Foundations | The exterior walls are supported by continuous wall footings. | | | Gravity System | The
gravity system consists of unreinforced masonry walls, concrete walls, and | | | | wood stud bearing walls. | | | Lateral System | Forces are resisted in the longitudinal and transverse directions by unreinforced | | | Lateral System | masonry walls on the main level and concrete shear walls on the lower level. | | ### 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Green Mountain School | Structural System | Description | | | | |---------------------|--|--|--|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | | | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | | | | Foundations | Unknown. | | | | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | | | | Lateral System | No visible signs of corrosion, damage, or deterioration. | | | | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Green Mountain Green Mountain School Main Building | Deficiency | Description | |-----------------------|---| | Shear Stress
Check | Pseudo shear stress is greater than 30 psi for the east-west walls. This building likely requires masonry shear wall strengthening, such as adding FRP or new lateral force resisting elements to reduce the demand on the existing shear walls. Further investigation is required. | | Proportions | The height-to-thickness ratio is greater than the limit required. URM wall strengthening, such as adding steel strongbacks, may be appropriate to mitigate seismic risk. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Green Mountain Green Mountain School Main Building | Unknown Item | Description | |--------------------|--| | Load Path | No drawings provided. This item requires further investigation to make a final determination on its compliance | | Load Falli | and to develop a mitigation recommendation, if necessary. | | | The liquefaction potential of site soils is unknown at this time given available information. Bedrock | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | Rupture | expected surface fault ruptures. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wall Anchorage | visually verified. This item requires further investigation to make a final determination on its compliance. | | | Tension ties, blocking, strapping, and diaphragm nailing may be required along the URM walls. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wood Ledgers | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | | Transfer to Shear | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Walls | visually verified. This item requires further investigation to make a final determination on its compliance. Post- | | wans | installed anchors may be required to connect the diaphragm to the URM shear walls. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Girder-Column | visually verified. This item requires further investigation to make a final determination on its compliance. The | | Connection | addition of positive connections using plates, straps, or hardware between girders and column supports may be | | | required. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Masonry Layup | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | | _ | This evaluation item is unknown due to lack of original building construction drawings and could not be | | a | visually verified. This item requires further investigation to make a final determination on its compliance. The | | Cross Ties | addition of new cross ties between diaphragm chords or the addition of strap plates to connect existing framing | | | members together may be appropriate. | | G. 11.01 41 | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on | | Straight Sheathing | its compliance and to develop a mitigation recommendation, if necessary. | | | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on | | Spans | its compliance. Installation of plywood sheathing may be appropriate if wood structural panel or diagonal | | | sheathing is non-existent. | | Diagonally | | | Sheathed and | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on | | Unblocked | its compliance. The addition of blocking and/or additional diaphragm nailing may be appropriate. | | Diaphragms | | | · | | #### Table 1-4. Identified Structural Checklist Items Marked as Unknown for Green Mountain Green Mountain School Main Building | Unknown Item | Description | |-------------------|---| | Stiffness of Wall | This evaluation item is unknown and could not be visually verified. This item requires further investigation to | | Anchors | make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | _ | Girder, and Truss Supports, This evaluation item is unknown and could not be visually verified. This item | | Beam | requires further investigation to make a final determination on its compliance. In non-compliant, the addition of | | | secondary column support may be appropriate. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Green Mountain Green Mountain School Main Building | Deficiency | Description | |----------------------------|--| | HR-not required; LS-H; PR- | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Green Mountain Green Mountain School Main Building | Unknown Item | Description | | | | | | |-----------------------------|--|--|--|--|--|--| | C-1 Suspended Lath and | | | | | | | | Plaster. HR-H; LS-MH; PR- | Further investigation is required to review suspended ceiling attachments. | | | | | | | LMH. | | | | | | | | C-2 Suspended Gypsum | | | | | | | | Board. HR-not required; LS- | Further investigation is required to review
suspended ceiling attachments. | | | | | | | MH; PR-LMH. | | | | | | | | LF-1 Independent Support. | Further investigation is required to review the support system for light fixtures. All light fixtures in | | | | | | | HR-not required; LS-MH; PR- | grid ceiling system should have seismic bracing. | | | | | | | MH. | grid certing system should have seisinic bracing. | | | | | | | PCOA-4 Appendages. HR- | Further investigation is required to verify reinforcing/anchorage of appendages extending above | | | | | | | MH; LS-MH; PR-LMH. | the main structural building system. Additional post-installed anchorage may be required. | | | | | | Figure 1-1. Green Mountain School - East Exterior Figure 1-2. Green Mountain School - South Exterior Figure 1-3. Green Mountain School - North Exterior Figure 1-4. Green Mountain School - West Exterior Figure 1-5. Wood-Framed Balcony at South Exterior Figure 1-6. Green Mountain School - Southwest Exterior Figure 1-7. Typical Classroom with Unknown Light Fixture Bracing Figure 1-8. Computer Room with Unknown Light Fixture Bracing Figure 1-9. Tall Nonstructural Components Unbraced, Typical Throughout Figure 1-10. Classroom - South Interior # Green Mountain, Green Mountain School, Main Building # 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. #### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|--| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | | | X | No drawings provided. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | X | | | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | X | | | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | X | | | | | | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | X | | | |----------|--|---|--|--| | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | X | | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | # Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) # **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|--| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Bedrock liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) #### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | # 17-36 Collapse Prevention Structural Checklist for Building Types URM and URMa Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. # Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------|---|---|----|-----|---
---| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the unreinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 30 lb/in.2 (0.21 MPa) for clay units and 70 lb/in.2 (0.48 MPa) for concrete units. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.5.1) | | X | | | Pseudo shear stress is greater than 30 psi for the east-west walls. This building likely requires masonry shear wall strengthening, such as adding FRP or new lateral force resisting elements to reduce the demand on the existing shear walls. Further investigation is required. | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|--| | | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support | | | | | This evaluation item is unknown due to lack of original building construction drawings and | | Wall Anchorage | are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. | | | | X | could not be visually verified. This item requires further investigation to make a final determination on its compliance. Tension ties, blocking, strapping, and | | | 5.7.1.1; Commentary: Sec. A.5.1.1) | | | | | diaphragm nailing may be required along the URM walls. | | | <u> </u> | |
 | | |-----------------------------|---|--|------|--| | Wood Ledgers | The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | | х | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.1) | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance. Post-installed anchors may be required to connect the diaphragm to the URM shear walls. | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance. The addition of positive connections using plates, straps, or hardware between girders and column supports may be required. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|--| | Proportions | The height-to-thickness ratio of the shear walls at each story is less than the following: Top story of multi-story building – 9; First story of multi-story building – 15; All other conditions – 13. (Tier 2: Sec. 5.5.3.1.2; Commentary: Sec. A.3.2.5.2) | | X | | | The height-to-thickness ratio is greater than the limit required. URM wall strengthening, such as adding steel strongbacks, may be appropriate to mitigate seismic risk. | | | | | | This evaluation item is | |---------------|---|--|---|-------------------------------| | | | | | unknown due to lack of | | | | | | original building | | | | | | construction drawings and | | | Filled collar joints of multi-wythe masonry walls | | | could not be visually | | Masonry Layup | have negligible voids. (Tier 2: Sec. 5.5.3.4.1; | | X | verified. This item requires | | | Commentary: Sec. A.3.2.5.3) | | | further investigation to make | | | | | | a final determination on its | | | | | | compliance and to develop a | | | | | | mitigation recommendation, | | | | | | if necessary. | #### **Diaphragms (Stiff or Flexible)** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|---------| | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | X | | | | | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | X | | | # Flexible Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|--|---|----|-----|---|---| | Cross Ties | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance. The addition of new cross ties between diaphragm chords or the addition of strap plates to connect existing framing members together may be appropriate. | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | | X | Type of wood sheathing is
unknown. This item requires
further investigation to make
a final determination on its
compliance and to develop a
mitigation recommendation,
if necessary. | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | | | X | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on its compliance. Installation of plywood sheathing may be appropriate if wood structural panel or diagonal sheathing is non-existent. | |--|---|---|--|---|---| | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | | X | Type of wood sheathing is unknown. This item requires further investigation to make a final determination on its compliance. The addition of blocking and/or additional diaphragm nailing may be appropriate. | | Other Diaphragms | The diaphragms do not consist of a system other
than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | | #### Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|--|---|----|-----|---|---| | Stiffness of Wall
Anchors | Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Tier 2: Sec. 5.7.1.2; Commentary: Sec. A.5.1.4) | | | | X | This evaluation item is unknown and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Beam, Girder, and
Truss Supports | Beams, girders, and trusses supported by unreinforced masonry walls or pilasters have independent secondary columns for support of vertical loads. (Tier 2: Sec. 5.7.4.4; Commentary: Sec. A.5.4.5) | | | | X | This evaluation item is unknown and could not be visually verified. This item requires further investigation to make a final determination on its compliance. In noncompliant, the addition of secondary column support may be appropriate. | # Green Mountain, Green Mountain School, Main Building # 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | X | | No fire sprinklers | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | X | | | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | X | | | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | | | |--|--|--|---|--|--| | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | #### **Partitions** | 1 at titions | | | | | | | |---|--|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural
Separations. HR-not
required; LS-not
required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | | X | Further investigation is required to review suspended ceiling attachments. | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum
board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | | X | Further investigation is required to review suspended ceiling attachments. | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | X | | | |--|--|--|---|--|--| | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | X | | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | X | | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | | | | CG-8 Overhead Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | | X | | | #### **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-------------------| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a
minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No masonry veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No masonry veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No masonry veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No masonry veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No masonry veneer | | M-6 Anchorage. HR-not required; LS-MH; PR-MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No masonry veneer | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | No masonry veneer | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | No masonry veneer | #### Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | _ | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | X | | | |--|--|--|---|---|--| | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | X | Further investigation is required to verify reinforcing/anchorage of appendages extending above the main structural building system. Additional post-installed anchorage may be required. | #### **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | #### Stairs | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|----------|---|---------| | S-1 Stair Enclosures. HR-not required; LS-LMH; PR-LMH. | EVALUATION STATEMENT Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. | С | NC | N/A
X | U | COMMENT | | | A.7.10.1) | | | | | | | | The connection between the stairs and the | | | | | | |---------------------------|---|---|--|---|--|--| | | structure does not rely on post-installed anchors | | | | | | | | in concrete or masonry, and the stair details are | | | | | | | S-2 Stair Details. HR-not | capable of accommodating the drift calculated | | | | | | | required; LS-LMH; PR- | using the Quick Check procedure of Section | | | X | | | | * ' | 4.4.3.1 for moment-frame structures or 0.5 in. | | | Λ | | | | LMH. | for all other structures without including any | | | | | | | | lateral stiffness contribution from the stairs. | | | | | | | | (Tier 2: Sec. 13.6.8; Commentary: Sec. | Ì | | | | | | | A.7.10.2) | | | | | | # **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due
to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|---------| | | Equipment weighing more than 20 lb (9.1 kg) | | | | | | | ME-1 Fall-Prone | whose center of mass is more than 4 ft (1.2 m) | | | | | | | Equipment. HR-not | above the adjacent floor level, and which is not | | | X | | | | required; LS-H; PR-H. | in-line equipment, is braced. (Tier 2: Sec. 13.7.1 | | | | | | | | 13.7.7; Commentary: Sec. A.7.12.4) | | | | | | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | X | | |--|---|---|---| | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | X | | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-6 Vibration Isolators.
HR-not required; LS-not
required; PR-H. | 1 11 | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|---|--|---|---| | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Elevators** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|-------------| | EL-1 Retainer Guards.
HR-not required; LS-H;
PR-H. | Sheaves and drums have cable retainer guards. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.1) | | | X | | No elevator | | EL-2 Retainer Plate. HR-
not required; LS-H; PR-
H. | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | | | X | | No elevator | | EL-3 Elevator
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | | | X | | No elevator | | EL-4 Seismic Switch.
HR-not required; LS-not
required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | | | Х | | No elevator | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | No elevator | |---|--|---|-------------| | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11;
Commentary: Sec. A.7.16.6) | X | No elevator | | EL-7 Brackets. HR-not required; LS-not required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | No elevator | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | No elevator | | | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | No elevator | This page intentionally left blank. **Note:** for seismic design category D, E & F, the flexible sprinkler hose fitting must accommodate at least $1^{\prime\prime}$ of ceiling movement without use of an oversized opening. Alternatively, the sprinkler head must have a $2^{\prime\prime}$ oversize ring or adapter that allows $1^{\prime\prime}$ movement in all directions. Figure G-1. Flexible Sprinkler Drop. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-2. End of Line Restraint. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### **Partitions** Figure G-3. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-4. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Notes:** Glazed partition shown in full-height nonbearing stud wall. Nonstructural surround must be designed to provide in-plane and out-of-plane restraint for glazing assembly without delivering any loads to the glazing. Glass-to-frame clearance requirements are dependent on anticipated structural drift. Where partition is isolated from structural drift, clearance requirements are reduced. Refer to building code for specific requirements. Safety glass (laminated, tempered, etc.) will reduce the hazard in case of breakage during an earthquake. See Example 6.3.1.4 for related discussion. Figure G-5. Full-height Glazed Partition. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-6. Full-height Heavy Partition. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-7. Typical Glass Block Panel Details. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Ceilings Figure G-8. Suspension System for Acoustic Lay-in Panel Ceilings – Edge Conditions. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Compression strut shall not replace hanger wire. Compression strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or 1/4" min. expansion anchor to structure. Size of strut is dependent on distance between ceiling and structure (I/r ≤ 200). A 1" diameter conduit can be used for up to 6', a 1-5/8" X 1-1/4" metal stud can be used for up to 10' Per DSA IR 25-5, ceiling areas less than 144 sq. ft, or fire rated ceilings less than 96 sq. ft., surrounded by walls braced to the structure above do not require lateral bracing assemblies when they are attached to two adjacent walls. (ASTM E580 does not require lateral bracing assemblies for ceilings less than 1000 sq. ft.; see text.) Figure G-9. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Assembly. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-10. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Layout. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Note: See California DSA IR 25-5 (06-22-09) for additional information. Figure G-11. Suspension System for Acoustic Lay-in Panel Ceilings – Overhead Attachment Details. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ### a) Gypsum board attached directly to ceiling joists ## b) Gypsum board attached directly to furring strips (hat channel or similar) Note: Commonly used details shown; no special seismic details are required as long as furring and gypboard secured. Check for certified assemblies (UL listed, FM approved, etc.) if fire or sound rating required. Figure G-12. Gypsum Board Ceiling Applied Directly to Structure. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-13. Retrofit Detail for Existing Lath and Plaster. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-14. Diagrammatic View of Suspended Heavy Ceiling Grid and Lateral Bracing. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) A-A Main Runner at Perimeter **B-B Cross Runner at Perimeter** Figure G-15. Perimeter Details for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### See figure 6.3.4.1-7 for connections of bracing and hanger wire to structure **Note:** Compression strut shall not replace hanger wire. Compresion strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or $1/4^{\prime\prime}$ min. expansion anchor to concrete. Size of strut is dependent on distance between ceiling and structure ($I/r \le 200$). A 1" diameter conduit can be used for up to 6', a $1-5/8^{\prime\prime\prime}$ X $1-1/4^{\prime\prime\prime}$ metal stud can be used for up to 10'. See figure 6.3.4.1-6 for example of bracing assembly. Figure G-16. Details for Lateral Bracing Assembly for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ## **Light Fixtures** Figure G-17. Recessed Light Fixture in suspended Ceiling (Fixture Weight < 10 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-18. Recessed Light Fixture in suspended Ceiling (Fixture Weight 10 to 56 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # **Contents and Furnishings** Figure G-19. Light Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Purchase storage racks designed for seismic resistance. Storage racks may be classified as either nonstructural elements or nonbuilding structures depending upon their size and support conditions. Check the applicable code to see which provisions apply. Figure G-20. Industrial Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-21. Wall-mounted File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-22. Base Anchored File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Engineering required for all permanent floor-supported cabinets or shelving over 6 feet tall. Details shown are adequate for typical shelving 6 feet or less in height. Figure G-23. Anchorage of Freestanding Book Cases Arranged Back to Back. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-24. Desktop Computers and Accessories. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### **Cantilevered Access Floor Pedestal** #### **Braced Access Floor Pedestal** (use for tall floors or where pedestals are not strong enough to resist seismic forces) Note: For new floors in areas of high seismicity, purchase and install systems that meet the applicable code provisions for "special access floors." # Figure G-25. Equipment Mounted on Access Floor. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment installed on an independent steel platform within a raised floor Figure G-26. Equipment Mounted on Access Floor – Independent Base. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment restrained with cables beneath a raised floor Figure G-27. Equipment Mounted on Access Floor – Cable Braced. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment anchored with vertical rods beneath a raised floor Figure G-28. Equipment Mounted on Access Floor – Tie-down Rods. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Mechanical and Electrical Equipment Note: Rigidly mounted equipment shall have flexible connections for the fuel lines and piping. Figure G-29. Rigidly Floor-mounted Equipment with Added Angles. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Supplemental base with restrained spring isolators Supplemental base with open springs and all-directional snubbers Supplemental base with open springs and one-directional snubbers Figure G-30. HVAC Equipment with Vibration Isolation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-31. Rooftop HVAC Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-32. Suspended Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-33. Water Heater Strapping to Backing Wall. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-34. Water Heater – Strapping at Corner Installation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-35. Water Heater – Base Mounted. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-36. Rigid Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-37. Cable Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ## **Electrical and Communications** Figure G-38. Electrical Control Panels, Motor Controls Centers, or Switchgear. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Wall-Mounted Figure G-39.
Freestanding and Wall-mounted Electrical Control Panels, Motor Controls Centers, or Switchgear. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-40. Emergency Generator. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage)